Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 878012, 2022.
Article in English | MEDLINE | ID: mdl-36035185

ABSTRACT

Clostridium difficile (C. difficile) is a multi-strain, spore-forming, Gram-positive, opportunistic enteropathogen bacteria, majorly associated with nosocomial infections, resulting in severe diarrhoea and colon inflammation. Several antibiotics including penicillin, tetracycline, and clindamycin have been employed to control C. difficile infection, but studies have suggested that injudicious use of antibiotics has led to the development of resistance in C. difficile strains. However, many proteins from its genome are still considered uncharacterized proteins that might serve crucial functions and assist in the biological understanding of the organism. In this study, we aimed to annotate and characterise the 6 C. difficile strains using in silico approaches. We first analysed the complete genome of 6 C. difficile strains using standardised approaches and analysed hypothetical proteins (HPs) employing various bioinformatics approaches coalescing, including identifying contigs, coding sequences, phage sequences, CRISPR-Cas9 systems, antimicrobial resistance determination, membrane helices, instability index, secretory nature, conserved domain, and vaccine target properties like comparative homology analysis, allergenicity, antigenicity determination along with structure prediction and binding-site analysis. This study provides crucial supporting information about the functional characterization of the HPs involved in the pathophysiology of the disease. Moreover, this information also aims to assist in mechanisms associated with bacterial pathogenesis and further design candidate inhibitors and bona fide pharmaceutical targets.

2.
Sci Rep ; 11(1): 17626, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475453

ABSTRACT

Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.


Subject(s)
Computational Biology/methods , Vaccines/immunology , Vaccinology/methods , Bacterial Vaccines/immunology , Chagas Disease/immunology , Chagas Disease/prevention & control , Cholera/immunology , Cholera/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Vibrio cholerae/immunology
3.
Adv Protein Chem Struct Biol ; 127: 161-216, 2021.
Article in English | MEDLINE | ID: mdl-34340767

ABSTRACT

With the tremendous developments in the fields of biological and medical technologies, huge amounts of data are generated in the form of genomic data, images in medical databases or as data on protein sequences, and so on. Analyzing this data through different tools sheds light on the particulars of the disease and our body's reactions to it, thus, aiding our understanding of the human health. Most useful of these tools is artificial intelligence and deep learning (DL). The artificially created neural networks in DL algorithms help extract viable data from the datasets, and further, to recognize patters in these complex datasets. Therefore, as a part of machine learning, DL helps us face all the various challenges that come forth during protein prediction, protein identification and their quantification. Proteomics is the study of such proteins, their structures, features, properties and so on. As a form of data science, Proteomics has helped us progress excellently in the field of genomics technologies. One of the major techniques used in proteomics studies is mass spectrometry (MS). However, MS is efficient with analysis of large datasets only with the added help of informatics approaches for data analysis and interpretation; these mainly include machine learning and deep learning algorithms. In this chapter, we will discuss in detail the applications of deep learning and various algorithms of machine learning in proteomics.


Subject(s)
Databases, Protein , Deep Learning , Proteome/metabolism , Proteomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...